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Abstract

The purpose of this paper is to consider Lome applications of

decision theory to the problem of instructional decision

making in computerbased adaptive instructional systems. In

particular, the Minnesota Adaptive Instructional System

(MAIS) will be discussed. It will first be indicated how the

problem of selecting ths. appropriate amount of instruction in

MAIS can be situated within the general framework of

(empirical) Bayesian decision theory. Subsequently, it will

be shown how five out of six characteristics identified as

essential in an effective computerized adaptive instructional

system can be improved by extending MAIS in two directions

(viz. adopting a linear loss model and the classical test

model).
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Introduction

Computerbased adaptive instructional systems were been

studied recently by Atkinson (1976), Ferguson (1970),

Hambleton (1974), Hansen, Ross and Rakow (1977), Holland

(1977), Park (1982) and Tennyson and Breuer (1984). Although

different authors have defined the term "adaptive

instruction" in a different way, most agree that it denotes

the use of strategies to adapt instructional treatments to

the changing nature of student abilities and characteristics

during the learning process (Tennyson & Park, 1984).

Four empirically based adaptive instructional modes have

been reviewed by Tennyson and Park (1984). The four models

are Atkinson's mathematical models, Ross's trajectory model,

Ferguson's testing and :ranching model, and Tennyson's

Minnesota Adaptive Instructional System (MAIS). These four

models vary in degree to which they use six characteristics

identified as essential in an effective adaptive

instructional system. The authors conclude that MAIS provides

for a complete adaptive instructional model, because all six

defined characteristics of adaptive instruction are

integrated into this model.

The purpose of this paper is to generalize and extend

the application of Bayesian decision theory in MAIS. First,

it will be indicated how this model can be situated within

the general framework of (empirical) Bayesian decision

theory, and what implicit assumptions have to be made in

doing so. Subsequently, it will be shown how five out of the
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six defined characteristics of computerized adaptive

instruction in the MAIS model can be improved by applying

other results from decision theory to this nodel. A linear

loss function is proposed to rep/ace the threshold loss

function assumed in MAIS. Moreover, optimal sequential

decision rules will be derived using Kelley's regression line

of classical test theory as the psychometric model instead of

the binomial model assumed in MAIS. The paper concludes with

a discussion of some new lines of research arising from the

application of decision theory to the MAIS model.

Adapting the Amount of Instruction

Initial work on MAIS began as an attempt to design an

adaptive instructional strategy for conceptlearning

(Tennyson, 1975). According to Merrill and Tennyson (1977),

conceptlearning can be conceived as a twostage process of

formation of conceptual knowledge and development of

procedural knowledge (for a complete review of the theory of

conceptlearning, see Tennyson and Cocciarella, 1986).

In MAIS, eight basic instructional design variables

directly related to specific learning processes are

distinguished. In order to adapt instruction to individual

learner differences (aptitudes, prior knowledge) and learning

needs (amount and sequence of instruction), these variables

are controlled by an intelligent tutor system (Tennyson,

Christensen & Park, 1984). The authors consider MAIS as an

8
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intelligent system, because it exhibits some machine

intelligence, as demonstrated by its ability to improve

decision making over the history of the system as a function

of accumulated information about previous students. In the

literature, successful research projects on MAIS have been

reported (e.g., Park & Tennyson, 1980; Tennyson, Tennyson &

Rothen, 1980). Three out of the eight instructional design

variables are directly managed by a computerbased decision

strategy, namely amount of instruction, instructional time

control, and advisement on learning need. These three

variables also belong to the six characteristics of

computerized adaptive instruction. In MAIS, selecting the

appropriate amount of instruction can be interpreted as

determining the optimal number of interrogatory examples

(question form).

The derivation of an optimal strategy with respect to

the number of interrogatory examples in a conceptlearning

lesson requires an instructional problem be s4-ated in a form

amenable to decisiontheoretic analysis. In the Bayesian view

of decision making, there are two basic elements to any

decision problem: a loss function describing the loss 1(ai,w)

incurred when action ai is taken for the student whose true

level of functioning is it (0 5 it 5 1), and a probability

function or psychometric model, f(x1w), relating observed

test scores x to student's true level of functioning.

These basic elements have been related to decision

problems in educational testing by many authors, particularly

in the context of computerbased adaptive instructional
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systems (e.g.. Atkinson, 1976; Swaminathan, Hambleton &

Algina, 1975; van der Linden, 1981a). As the use of the

decision component in MAIS refers to sequential mastery

testing, we shall discuss here only the application of the

basic elements to this problem.

It is assumed that, due to measurement and sampling

errors, the true level of functioning w is unknown. All that

is known is the student's observed test score X from a small

sample of n interrogatory examples (x = 0,1, . . . . ,n).

Furthermore, the following two actions are available to the

decisionmaker: advance a student (al) to the next concept if

his/her test score X = x exceeds a certain cutoff score c on

the observed test score scale X, and retain (a0) him/her

otherwise. Students with test score X below the cutoff score

c are provided with additional expository examples (statement

form). A new interrogatory example is then generated. This

procedure is applied sequentially until either mastery is

attained or the pool of test items is exhausted. Now, the

sequential mastery decision problem can be stated as choosing

a value of c that, given the value of the criterion level wo,

is optimal in some sense. The criterion level To e (0,1]

the minimum degree of mastery required is set in advance by

the decisionmaker.

Generally speaking. F. loss function specifies the total

costs of all possible decision outcomes. These costs concern

all relevant psychological, social, and economic consequences

which the decision brings along. An example of economic

consequences is extra computer time associated with

10
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presenting additional instructional materials. In Tennyson's

approach, the loss function is supposed to a threshold

function. The implicit choice of this function implies that

the "seriousness" of all possible consequences of the two

available actions can be summarized by four constants, one

for each of the four possible decision outcomes (see Table

1).

Insert Table 1 about here

For convenience, and without loss of generality (e.g.,

Davis, Hickman & Novick, 1973), it is assumed in Table 1 that

no losses occur for correct decisions, and, that therefore,

the losses associated with correct advance and retain

decisions (111 and 100, respectively) can be set equal to

zero.

In the decision component of WS, a loss ratio R must

be specified. R refers to the relative losses associated with

advancing a learner whose true level of functioning is below

"0 and retaining one whose true level exceeds w0. From Table

1 it can be seen that the loss ratio R equals 110/101 for all

values of w.

Finally, it is assumed that the psychometric model in

MAIS relating observed test scores X to the true level of

functioning w can be represented by the binomial model,
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(1) f(x1w) = (111c)

Within a Bayesian decisiontheoretic framework a

sequential mastery decision problem is solved by minimizing

the 'Tapes risk", which is minimal if for each value x of X

an action with smallest posterior expected loss is chosen.

The posterior expected loss is the expected loss taken with

respect to the posterior distribution of w.

It can be seen from the loss table that a decision rule

minimizing posterior expected loss is to advance a student

whose test score x is such that

(2) 110Prob(w < wolx,n) 5 101Prob(w t wolx.n).

and to retain him/her otherwise. Since 101 > 0, this is

equivalent to advancing a student if

(3) Prob( w S wolx,n) 5 1/(1+R),

and retaining him/her otherwise. Prob(w 5 irolx,n) denotes the

probability of the student's true level of functioning

smaller or equal to w0 given a test score x on a test of

length n. In fact, this probability is given by the

cumulative posterior distribution of T. In MIS this quantity

is called the "beta value" or "operating level" (Tennyson.

Christensen & Park. 1984).

12
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It should be noted that, as can be seen from the

decision rule, the decisionmaker need not specify the values

110 and 101 completely. He needs only assess their ratio

110/101 For assessing loss functions, most texts on decision

theory propose lottery methods (see, for example, Luce &

Raiffa. 1957, chap. 2; for a recent modification, see Novick

& Lindley, 1979). But in principle any psychological scaling

method can be used. Although helpful techniques are

available, this does not mean that, for example, in programs

of individualized instruction, assessment of losses is always

a simple matter. In the next section. we shall consider one

method that works in decision problems with a finite number

of outcomes such as the sequential mastery decision problem.

In order to initiate the decision component in MAIS,

three kinds of parameters must be specif.-ad in advance

(Rotnen & Tennyson. 1984). Beside the parameters '0 and R. a

probability distribution representing the prior knowledge

about w must be available. In MAIS, a beta distribution.

B(a.8), is used as a prior distribution, and a pretest score

together wit.n information about other students is used to

specify its parameter values.

Keats and Lord (1962) have shown that simple moment

estimators for a and 0 can be derived that are based on the

mean, the standard deviation, and the KR-21 reliability

coefficient of the test scores from the previous students.

Let the KR-21 reliability be defined as

13
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AX(ngX)
(4) r23 = (1 ) .

n-1 na61

where ux and ah denote the mean and the variance of the

pretest scores, respectively. Then the estimates a and of

a and 13, respectively, are given as

(5) a = (-1 + 1/r21)11

= n/r21 n.

It follows that the posterior distribution of ir is

easily obtained. From an application of Bayes' theorem, the

posterior distribution will again be a member of the beta

family (the conjugacy property). In fact, if the prior

distribution is B(a,8) and the student's test score is x from

a test of length a, then the posterior distribution is

B(x+a,nx+8). The beta distribution has been extensively

tabulated (e.g., Pearson, 1930). Normal approximations are

also available (Johnson & Kotz, 1970, sect. 2.4.6). In

general, if r has a beta distribution with parameters (a,B)

where neither a nor is small (say, not < 10), then this

distribution can be approximated by a normal distribution

with mean aga+0) and variance a0/((a+0)2(a+0+1)). These mean

and variance are just those of the beta distribution.

Tennyson and Christensen (1986) use a nonlinear regression

approach that fits the best polynomial as an approximation of

the beta distribution. Finally, Vijn and Molenaar (1981) have

14
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shown, in the context of robustness regions for dichotomous

decisions, that, if we put

To = arcsiniwo

(6) gN = arcsin((a+x+3/8)/(a+p+n+3/4))3

tN 4cc+4p+4n+2)-3.

expression (3) can be replaced by

(7) TO gN 5 (tN /1.7)1nR,

from which the optimal cutting score x can easily be

evaluated on a computer.

The MAIS decision procedure for adapting the number of

interrogatory examples can now be summarized as follows: 7f

the quantity 1/(1+R) exceeds a student's beta value, (s)he is

passed to the next instructional unit (i.e., next concept) or

final (summative) posttest. However, if his/her beta value is

below this quantity, his/her posterior distribution is used

as a prior distribution in a next cycle. A new interrogatory

example is then generated. The procedure is applied

iteratively until either the quantity 1/(1+R) exceeds the

beta value, or all interrogatory examples in the pool for the

concept have been presented.

In the MAIS decision procedure, it is assumed that the

form of the loss structure involved is a threshold function.

Therefore, only the loss ratio R has to be assessed

empirically. However, a decisionmaker's loss structirvan

15
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be completely assessed without making any assumptions about

the form of the loss function. Only minimal axioms from

utility theory have to be assumed. However, as van der Linden

(1981a) has pointed out, these techniques do not

automatically lead to elegant loss functions and optimal

cutting scores. It may be wisp, therefore, to use these

techniques only for a priorly chosen mathematical form of the

loss function. In addition to the threshold loss function,

however, mt-rq useful functions have been adopted in decision

theory. Ore such function will be considered below.

The Linear Loss Model

An obvious disadvantage of the threshold loss function is

that it assumes constant loss for students to the left or to

the right of vo, no matter how large their distance from w0.

For instance, a misclassified true master (see Table 1) with

a true level of functioning just above To gives the same loss

as a misclassified true master with a true level far above

T0. It seems more realistic to suppose that for misclassified

true masters the loss is a monotonically decreasing function

of the variable

Moreover, as can be seen in Table 1, the threshold loss

function shows a "threshold" at the point 11 = vo, and this

also seems unrealistic in many cases. In the neighbourhood of

this point, the losses for correct and incorrect decisions

frequently change smoothly rather than abruptly.

16
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In view of this, van der Linden and Mellenbergh (1977)

propose a linear loss function:

(8) 1(ai.w) =

bo(wwO)+ft for i = 0 (retain)

b0, bl > 0.

b1(w0 w)+d1 for i = 1 (advance)

The above defined function consists of a constant term

and a term proportional to the difference between the true

level of functioning w and the specified criterion level vo.

The constant amount of loss, di (3=0.1). can, for example,

represent the costs of testing. The condition bp. b1 > 0 is

equivalent to the statement that for actions a0 and a1,

.tility is a strictly increasing and decreasing function of

the variable w, respectively. The parameters bo, bl, do, and

d1 have to be assessed empirically. Figure 1 displays an

example of this function.

Insert Figure 1 about here

The linear loss function seems to be a realistic

representation of the losses actually incurred in many

decision making situations. In a recent study, for example,

it was shown by van der Gaag (1987) that many empirical loss

structures could be approximated by linear functions.

17
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As the general linear loss function now stands, we need

to determine the four constants b0, b1, d0, and d1 before it

can be applied. However, if we use the fact that a loss

function needs to be determined only up to a positive

multiplicative and additive constant (e.g., Luce & Raiffa,

1957), we can reduce the number of unknown constants to two.

Thus, since b1 > 0, we may redefine 1(ajor) by making the

positive linear transformation 1*(ai,w) =

And so

b*(T-T0)+d*

(9) 1*(ai,T) =

TO -

for i = 0

for i = 1,

where b* = b0 /b1 and d* = (do-di)/bi.

We turn now to an illustration of one of the most direct

methods available for determining the constants b* and d*. In

order to make the method work, the decision-maker must be

able to specify two ordered pairs (vi,vj) and (vi,w3) such

that

1*(a0,vi) = 1*(alorj)

(10) and

1*(a0,wi) = 1*(al,w3).

Solving this system of equations, we find that

(11) b" = (T3 - Ti)/(Ti - wi) and d* = To - wj - b*(vi - To).

18
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Choosing the wcoordinate of the intersection of both loss

lines 1*(a0,w) and 1*(a1,w) as one of the ordered pairs, it

follows that

(12)

b* = (wjwp)/(wpTi)

d* = (w0 wp)(1+b*),

where w denotes the point of intersection.

The decision rule that minimizes the posterior expected

loss in the case of a linear loss function is to advance a

student with test score x for which

(13) E((wow)lx,n] s E(b*(irw0)+d*lx,11]

and to retain him/her otherwise. Since (l+b*) > 0, this is

equivalent to advancing a student if

(14) E[wlx,n] a wo d*/(1+b*),

and retaining him/her otherwise. In other words, with linear

loss, the action taken depends only upon the expectation of

the posterior distribution of w, other attributes of the

distribution are irrelevant for decision purposes.

Using the fact that the expectation of a beta

distribution B(a,0) is equal to a/(a+0), and, thus, the

posterior expectation equals (a+x)/(a+x+0+r-x), it follows
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that a student is advanced if his/her test score x is such

that

(15) x t (a+13+n][w0d*/(1+b*)] a,

and retained otherwise.

Putting 1*(ao,w) and 1*(al,w) equal to each other, it

appears that the wcoordinate of the intersection of both

loss lines from Formula (9), wp, is equal to To ei(l+b*).

Therefore, the decision rule can be viewed as advancing a

student if his/her expectation of the posterior distribution

of w is to the right of the intersection point, and retaining

him/her otherwise. Note that with linear loss, only the point

of intersection, wp, of the two loss lines for retain and

advance are needed, and, thus, the intercept and slope of

Formula (9) does not have to be estimated. Hence, expression

15 is equivalent to

(16) x t (a43+n]wp a.

When d' = 0, that is, d0 = dl, both loss lines intersect

at w = To and an interesting case arises. Then, all loss

function parameters vanish from the decision rule and, thus,

it takes the form of advancing a student if

(17) E[wlx,n] t wo,

20
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and retaining him/her otherwise. In other words, if the

amounts of constant loss, di (j = 0.1). for both decisions

are equal, or if there are no constant losses at all (i.e..

no costs of testing are involved), then there is no need to

assess the parameters d' and b* in adapting the number of

interrogatory examples. In that case, the decision rule can

even be simplified to advance a student if his/her

expectation of the posterior distribution of w is greater

than or equal to the specified criterion level woo and to

retain him/her otherwise.

In MAIS, it is assumed that the form of the psychometric

model relating observed test scores to student's true level

of functioning can be represented by the binomial model

(Equation 1). In the next section, another psychometric model

used in criterionreferenced testing will be considered.

Classical Test Model

The expectation of the posterior distributions, E(wIxon],

represents the regression of w on x. A possible regression

function is the linear regression function of classical test

theory (Lord & Novick, 1968):

x gx
(18) E(wIxon] = Pxx' (1 ftx.).

n n

gx and pxx. being the mean and reliability coefficient of X.



www.manaraa.com

Applications of Decision Theory

17

Equation 18 is known as Kelley's regression line. This

is an interesting equation in that it expresses the estimate

of the true level of functioning as a weighted sum of two

separate estimates one based upon the student's observed

score, x, and, the other based upon the mean, gx, of the

group to which s(he) belongs. If the test is highly reliable,

much weight is given to the test score and little to the

group mean, and vice versa.

Substituting Equation 18 into expression 14, and solving

for x gives the following optimal sequential decision rule

(19) x t gx +
n {ir0 d * /(1 +b *)} gx

Pxr

If the amounts of constant loss for both decisions are equal,

i.e. d* = 0, or if there are no constant losses at all,

expression 19 will take the rather simple form

(20) x k gx + "0

Or

(21) x

PXX'

gx(Pxx.-1) + nwo

Pxr

Since 0 s PXX' s 1, and, thus 1 s PXX-1 s 0. it

follows from expression (21) that gx and the optimal

sequential cutting score, x, are related negatively. The

higher the average performance, the lower the optimal

22
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sequential cutting score. Hardworking students are rewarded

by low cutting scores, while less hardworking students will

just be penalized and confronted with high cutting scores.

This is the opposite of what happens when normreferenced

standards are used (van der Linden & Mellenbergh. 1987).

It should be stressed that, as can be seen from (20).

the optimal sequential cutting score. i.e. the number of

interrogatory examples to be administered to the student,

depends upon gg and pgx., the decision component in MATS

allows for an updating after each response to an

interrogatory example. This explains why, though the

decisions for determining the optimal number of

interrrogatory examples are made with respect to an

individual student, the rules for the decisons are based on

data from all students taught by the system in the past and,

in doing so. are improved continuously. In other words, a

computerbased adaptive instructional system can be designed

in this way, i.e.. a system of rules improving itself over

the history of the system as a result of systematically using

accumulated data from previous students. The parameters of

the model. gx and pgg., are updated each time a next student

has finished his/her dialogue with the system. Kimball (1971)

entitles such systems as "selfoptimizing".
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Characteristics of Adaptive Instruction

in the Extended MAIS

In this section. the six defined characteristics of

computerized adaptive instruction according to Tennyson and

Park will be discussed for MAIS with the extensions proposed

in the present paper.

The first characteristic is initial diagnosis and

prescription. MAIS uses this characteristic by administering

a pretest (pretask data) to all students from which an

initial prior estimate of a student's ability results. The

prior distribution is supposed to be a beta distribution.

B(a.8). Estimates of the parameters a and are given by

Equation 5. As an aside, it may be noted that if

administering a pretest is not possible for any reason, the

prior distribution of a student can be characterized by a

uniform distribution on the interval from zero to one. In

that case, the parameters of the beta prior should be

specified as a = = 1. Also, the use of Kelley's regression

line (Equation 18) as an estimate of the true score can be

considered as an informal way to take account of prior

knowledge.

The second characteristic concerns the sequential

character of the instructional decisionmaking process. MAIS

uses this characteristic when updating the beta value after

each interrogatory example (ontask data) and comparing this

value to the quantity 1/(1+R) (Expression 3). Using a linear

loss function, the posterior expectation of the true level of

24
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functioning should be compared with the point of intersection

of the two loss lines for the retain and advance decisions

(Expression 12). Moreover, when the amounts of constant loss

are equal or, if there are no constant losses at all, the

sequential decision rule can even be simplified to comparing

the posterior expectation with the criterion level, To, set

in advance (Expression 17). Finally, it has been indicated in

the previous section that the sequential rules for the

instructional decision making process can even be based on

data from all students taught by tbp system in the past, if

we adopt the classical test model as the psychometric model

actually involved (Expression 19).

The third characteristic refers to the appropriate

amount of instruction each student receives to achieve the

defined instructional objectives. As mentioned before, in

MAIS this is done by determining the optimal number of

interrogatory examples. Besides the threshold loss function

assumed in MAIS, the optimal number of interrogatory examples

has been determined in 'ase a linear loss function as well as

Kelley's regression line of classical test theory is adopted.

The fourth characteristic pertains to the sequence of

instruction. In MAIS this characteristic follows closely a

cognitive theory of concept and rule learning. Since this

characteristic is not controlled by the decision component,

we refer for further discussion to Tennyson, Youngsters and

Suebsonthi (1983).

The fifth characteristic is instructional time control.

Control of the instructional time is associated directly with

25
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the Bayesian beta values established for the necessary amount

of instruction. The proposed extensions of MAIS described in

this paper, namely the linear loss model and the classical

test model, can ba applied to control the instructional time

in a possibly even better way by using the improved optimal

sequential decision rules.

Finally, the last characteristic concerns the advisement

of learning need. This advisement provides the necessary

information by which students can make adequate self

assessments and learning needs judgment. As noted before.

this characteristic is one of the eight instructional design

variables within MATS and is also directly managed by the

decision component. Analogous to the previous characteristic.

it might be expected that by using the proposed linear loss

model and the classical test model, this characteristic can

be used in such a way that MAIS can even be made more

effective.

In summary, five out of the six characteristics

identified as essential in an effective computerized adaptive

instructional system can be improved by applying the

extensions discussed in this paper.

New Lines of Research

There are a few new lines of research arising from the

application of psychometric theory to the decision component

in MAIS. The first is the extension of the work of Tennyson
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and his associates to situations where guessing and

carelessness are incorporated. Morgan (1979) has developed a

model with corrections for guessing and carelessness within a

Bayesian decisiontheoretic framework. The results of a

computer simulation of the model indicate that guessing and

carelessness may markedly affect the determination of cutting

scores, and hence the accuracy of decisions about mastery.

The second line is research into other prior

distributions for w (for example, the standard normal

distribution) than the beta distribution assumed in MAIS. It

might also be assumed that no prior distribution about w is

available, because specifying such a distribution 1.4 too

difficult a job to accomplish. In these circumstances, the

minimax procedure may be an appropriate framework (e.g.,

Huynh, 1980; van der Linden, 1981b) which requires no prior

distribution regarding the true level of functioning. In this

case, the optimum cutting score is obtained by minimizing the

maximum risk which would incurred by misclassifications. As

an aside, it might be noted that a minimax rule can be

conceived as a rule that minimizes the "Balms risk" as well,

but uLder the restriction that the prior is the least

favorable of the class of priors (e.g., Ferguson, 1967,

sect.1.6.).

The third line of research concerns still other loss

structures than the threshold and linear loss function, which

represent possibly even more realistic forms that loss

structures might take in applications to instructional

deciAion making in computerbased adaptive instructional
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systems. For example, the normal ogive function (Novick &

Lindley. 1978) which takes loss to he a nonlinearly function

of the true level of functioning v. This loss function does

not only have realistic properties but also can be combined

nicely with a normal model for the test data.

Finally, an interesting new line of research seems to be

an extension of the actions available to the decisionmaker.

In MAIS, two actions were available to the decisionmaker.

namely advancing (a1) or retaining OW a student. However.

it might also be assumed that there are three (or any finite

number) of actions open to the decisionmaker. For example.

in the threeaction problem the student may provided with

additional instructional materials both of the present and

the previous concept (a2); (s)he may provided only with

additional instructional materials of the present concept

(a0); or, (s)he may advance to the next concept (a1).

We might think of this problem in terms of specifying

two cutting scores co and c1 on the observed test score sca)e

X. where c0 < c1. Then for observed test score z < c0. action

a2 will be taken; for c0 < x < c1. action ao will be taken:

and, for x > c1. action a1 will be taken.

Davis. Hickman and Novick (1973) have given a solution

to the threeaction problem using a natural extension of the

threshold loss function. Although the notation becomes more

complex and the computation a bit more tedious, there are no

fundamentally new ideas in the multipleaction problem.

28
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Some Summary Remarks

In this paper it was indicated how the MAIS decision

procedure could be formalized within a Bayesian decision

theoretic framework. In fact, it turned out that this

decision can be considered as a sequential mastery decision.

Moreover, it was argued that in many situations the

assumed threshold loss function in MAIS is an unrealistic

representation of the loss actually incurred. Instead, a

linear loss function was proposed to meet the objections to

threshold loss.

Further, Kelley's regression line of classical test

theory was proposed as the psychometric model relating

observed test scores to the true level of functioning. Using

this psychometric model instead of the binomial model assumed

in MAIS, computerbased adaptive instructional systems can be

designed in which the determination of the optimal number of

interrogatory examples for an individual student is based on

data from all students taught by the system in the past.

With these two extensions of the MAIS model, it might be

expected that five out of the six characteristics of

computerized adaptive instruction can even be improved in

this model.

Whether or not the proposed linear loss model and the

classical test model are, however, real improvements of the

present decision component in MAIS (in terms of student

performance on posttests, learning time, and amount of

29
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instruction) must be decided on the basis of empirical

experiments.
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Author's Note

The author is indebted to Wim J. van der Linden for his

valuable comments on earlier drafts of the paper.
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Table 1

Twofold Table for Threshold Loss Function

Decision

Advance

Retain

True level

T2TO v<vo
(true master) (true nonmaster)

0 110

101 0
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Figure Caption

Figure 1. An Example of a Linear Loss Function.

(b0 * b1. dO * dl)
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